PUBLICATIONS
Refereed Journal Articles (Under review & In preparation)
[39] Baek, S.†, Jeon S., Kim, J., S. Baek†, S. Jeon, J. Kim, J.Y. Kim, and Kim, G.* (2024). Experimental study on the relationship between classical and nonclassical material nonlinearity in standing waves (In preparation).
[38] Rhee, J.H.†, Kim, B.J.†, Baek, S.†, Kim, H., Lee, C.*, and Kim, G.* (2024). High-intensity focused ultrasound for spatiotemporal control of per- and poly-fluoroalkyl substances (PFAS) degradation using high-intensity focused ultrasound (In preparation).
[37] Park, J.†, Rhee, J.H.†, Baek, S., Moon, J., and Kim, G.* (2024). Integration of ultrasound and Raman spectroscopy for nderstanding early-stage carbonation processes in cementitious materials (In preparation).
[36] Baek, S.†, and Kim, G.* (2024). Reference-free quantitative ultrasound (QUS) imaging for damage detection in cementitious materials (In preparation).
[35] Kim, J.H., Baek, S., Kim, J.-Y., Kurtis, K.E., and Jacobs, L.J.*, and Kim, G.* (2024) Review of second harmonic generation methods for evaluation of material state in concrete (In preparation).
[34] Kim, K., Kim, M.K., Yoon, S.H., and Kim, G.* (2024) Experimental and numerical investigation of the flexural performance of RC columns reinforced with spiral wire rope strands (In preparation).
[33] Escalona, C.G.†, Kim, H.E.†, Baek, S., J.H. Rhee, Kim, J.S.*, and Kim, G.* (2024). Ultra-fast sonopolimerization of polyacrylamide using ultrasound (In preparation)
[32] Sim, S.†, Rhee, J.H., and Kim, G.* (2024). Effect of recurring on thermally damaged cement composites evaluated by nonlinear impact resonance acoustic spectroscopy (In preparation).
[31] Baek, S.†, Rhee, J.H.†, Cheng, S., Chamorro, L.P., and Kim, G.* (2024). On the acoustic beam forming through bio-mimicking materials (In preparation).
[30] Rhee, J.H.†, Skylar, S.†, Kim, M.†, Baek, S., Kim, M., Cheng, S., Chamorro, L.P., Ko, H., Robb, M.J.*, and Kim, G.* (2024). Multichannel mechanophores-driven sensors for force visualization: Quantifying stress and strin using mechanochromism (In preparation)
[29] Kwon, S.-H.†, Lee, J.-S., Kwon, S.-J., Ji, G.-B., Kim, G., and Kim, H.-K.* (2024). On the characteristic values of carbonation rate and chloride diffusion coefficient in aged concrete of existing structures, Journal of Materials in Civil Engineering (Under review).
[28] Seo, W.†, Lee, S.†, Baek, S.†, Shin, D.M., Kim, G.*, and Yun, T.S.* (2024). Utilizing linear and nonlinear ultrasound for improved estimation of concrete strength, Nondestructive Testing and Evaluation (Under review).
[27] Baek, S.†, Liyew, G., Rhee, J.H., Park, C.S., Kim, H.-K.*, and Kim, G.* (2024). Monitoring chloride-induced corrosion in cementitious materials using quantitative ultrasound imaging: From mechanical property alteration to crack propagation, Structural Health Monitoring (Under review).
[26] Baek, S.†, Jeon S., Kim, J., Lim, C., and Kim, G.* (2024). Exploring the potential of null subtraction imaging for detecting sub-rebar regions in reinforced concrete structures at nuclear power plants, Nondestructive Testing and Evaluation (R&R).
[25] Baek, S.†, Kim, H., Rhee, J.H., Liyew, G., Park, C.S., Kim, H.-K.*, and Kim, G.* (2024). On the inherent material states of ultra-high performance concrete from an acoustic perspective: Linking mechanical properties to microstructural conditions, Construction and Building Materials (R&R).
Refereed Journal Articles (Published)
[24] Baek, S.†, Kim, K.Y., Yun, T.S.*, and Kim, G.* (2024). Linear and nonlinear ultrasound parameters attributed to anisotropy in granite,” Scientific Reports, 14, 26986.
[23] Baek, S.†, Rhee, J.H., Kim, H., Park, S., Dahal, M., Kim, S.I., Song, H.M., and Kim, G.* (2024). Application of shear horizontal guided waves for nondestructive damage detection in thin-walled ultra-high performance concrete, Journal of Building Engineering, 98, 111023.
[22] Baek, S.†, Kim, J.-Y., and Kim, G.* (2024). Nonlinear standing waves for assessing material nonlinearity in thin samples, Ultrasonics, 142, 107385.
[21] Baek, S.†, Kim, H.-K., Oelze, M.L., and Kim, G.* (2024). Can carbonation depth be determined in a nondestructive way? High-frequency quantitative ultrasound imaging for cementitious materials, Cement and Concrete Research, 180, 107519.
[20] Park, S.†,Rhee, J.H.†, Baek, S.†, Pyo, S.*, and Kim, G.* (2024). A multi-frequency ultrasonic method for nondestructive detection of setting times and internal structure transition of building materials, Construction and Building Materials, 425, 136087.
[19] Rhee, J.H.†, Nuguyen, H.D., Kim, M.K., Lim, Y.M., and Kim, G.* (2024). Integrated machine-learning model for assessing multi-type damage in steel beams under dynamic loading, Structures ,61, 106125.
[18] Baek, S.†, Lee, B.D., Rhee, J.H., Kim, Y., Kim, H., Hong, S.K., Zi, G., Kim, G.*, and Yun, T.S.* (2024). Nondestructive detection of crack density in ultra high-performance concrete using multiple ultrasound measurements: Evidence of microstructural change, Computers and Concrete, 33 (4), 399-407.
[17] Sim, S.†, Rhee, J.H., Oh, J.-E., and Kim, G.* (2023). Enhancing the durability performance of thermally damaged concrete with ground-granulated blast furnace slag and fly ash, Construction and Building Materials, 407, 133538.
[16] Rhee, J.H.†, Gwon, S., Sim, S., and Kim, G.* (2023). Mitigating self-desiccation of cement composites via cellulose microfibers: Evidence of the microscopic behavior, Construction and Building Materials, 399, 132585.
[15] Kim, G.†,* (2023). New advances in cement and concrete research, Materials (Editorial), 16 (11), 41622023.
[14] Gwon, S.†, Ahn, E.†, Shin, M., Kim, J.-Y., and Kim, G.* (2022). Assessment of internal curing of cellulose microfibers-incorporated cement composites using nonlinear resonance spectroscopy technique, Construction and Building Materials, 352. 129004.
[13] Kim, G.†,*, and Kurtis, K.E. (2022). Early-stage assessment of drying shrinkage in Portland limestone cement concrete using nonlinear ultrasound, Construction and Building Materials, 342. 128099.
[12] Wang, X†., Kim, G.†, Chu, J.L.†, Song, T., Yang, Z., Li, K.C., and Lu, L.* (2022). DNZAyme based in vivo metal ion detection using high intensity focused utlrasound (HIFU), Journal of the American Chemical Society (JACS), 144 (13), 5812-5819. (Covered in Herald, Medical Today, Yonhapnews, Donga-Science, 서울경제, UNIST News Center, etc.)
[11] Kim, G.†, Qiong, W.†, Chu, J.L., Smith, E.J., Oelze, M.L., Moore, J.S.*, and Li, K.C.* (2022). Ultrasound controlled mechanophore activation in hydrogels for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America (PNAS),
[10] Kim, G.†, Cheng, S.,Hong, L., Kim, J.T., Li, K.C., and Chamorro, L.P.* (2021). On the acoustic fountain types and flow induced with focused ultrasound. Journal of Fluid Mechanics, 909, 2021.
[9] Kim, G.†, Jang, J., Kim, K. Y., and Yun, T. S.* (2020). Characterization of orthotropic nature of cleavage planes in granitic rock. Engineering Geology, 265, 105432.
[8] Kim, G.†, Lau, V. M., Halmes, A. J., Oelze, M. L., Moore, J. S.*, and Li, K. C.* (2019). High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 116(21), 10214-10222. (Covered in UIUC News, Beckman Institute News, Phys.org, National Academy of Sciences, etc.)
[7] Kim, G.†,*, Park, S., Kim, J. Y., Kurtis, K. E., Hayes, N. W., and Jacobs, L. J. (2018). Nonlinear Rayleigh surface waves to characterize microscale damage due to alkali-silica reaction (ASR) in full-scale, nuclear concrete specimens. Construction and Building Materials, 186, 1114-1118.
[6] Kim, G.†, Loreto, G., Kim, J. Y., Kurtis, K. E., Wall, J. J., and Jacobs, L. J.* (2018). In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading. Ultrasonics, 88, 64-71.
[5] Kim, G.†, Giannini, E., Klenke, N., Kim, J. Y., Kurtis, K. E., and Jacobs, L. J.* (2017). Measuring alkali-silica reaction (ASR) microscale damage in large-scale concrete slabs using nonlinear Rayleigh surface waves. Journal of Nondestructive Evaluation, 36(2), 1-6.
[4] Kim, G.†, Kim, J. Y., Kurtis, K. E.*, and Jacobs, L. J. (2017). Drying shrinkage in concrete assessed by nonlinear ultrasound. Cement and Concrete Research, 92, 16-20.
[3] Kim, G.†, Kim, J. Y., Kurtis, K. E., Jacobs, L. J.*, Le Pape, Y., and Guimaraes, M. (2016). Quantitative evaluation of carbonation in concrete using nonlinear ultrasound. Materials and Structures, 49(1-2), 399-409. Outstanding papers for 2015 (Covered in RILEM News, Georgia Tech News).
[2] Kim, G.†, In, C. W., Kim, J. Y., Kurtis, K. E., and Jacobs, L. J.* (2014). Air-coupled detection of nonlinear Rayleigh surface waves in concrete—Application to microcracking detection. NDT & E International, 67, 64-70.
[1] Won, J. H.†, Kim, M. K.*, Kim, G., and Cho, S. H. (2014). Blast-induced dynamic response on the interface of a multilayered pipeline. Structure and Infrastructure Engineering, 10(1), 80-92.
†: First author, *: Corresponding author
Patents (South Korea)
[4] Kim, G., Rhee, J.H., Baek, S., "Color change image analysis method based on deep learning of mechanopore-based polymer sensor," (No.: 10-22023-0133825, 10/06/2023).
[3] Kim, G., Rhee, J.H., Baek, S., "Interworking method of strain measurement by changes in mechanophore color and movement of beads," (No.: 10-2023-0127372, 09/22/2023)
[2] Kim, G., Rhee, J.H., Baek, S., "Mechanophore color change and strain measurement device using high-intensity focused ultrasound," (No.: 10-2023-0124350, 09/18/2023).
[1] Kim, G., and Baek, S., "Electronic device and method of operation for measuring the acoustic nonlinear coefficient of materials," (No.: 10-2023-0113728, 08/29/2023).
Patents (United States)
[1] U. S. Patent: “Mechanochemical dynamic for focal cancer treatment (US Patent, US 2023/0119684 A1, 04/20/2023).